Original Link: https://www.anandtech.com/show/5176/amd-revises-bulldozer-transistor-count-12b-not-2b

This is a bit unusual. I got an email from AMD PR this week asking me to correct the Bulldozer transistor count in our Sandy  Bridge E review. The incorrect number, provided to me (and other reviewers) by AMD PR around 3 months ago was 2 billion transistors. The actual transistor count for Bulldozer is apparently 1.2 billion transistors. I don't have an explanation as to why the original number was wrong, just that the new number has been triple checked by my contact and is indeed right. The total die area for a 4-module/8-core Bulldozer remains correct at 315mm2.

CPU Specification Comparison
CPU Manufacturing Process Cores Transistor Count Die Size
AMD Bulldozer 8C 32nm 8 1.2B ~2B 315mm2
AMD Thuban 6C 45nm 6 904M 346mm2
AMD Deneb 4C 45nm 4 758M 258mm2
Intel Gulftown 6C 32nm 6 1.17B 240mm2
Intel Sandy Bridge E (6C) 32nm 6 2.27B 435mm2
Intel Nehalem/Bloomfield 4C 45nm 4 731M 263mm2
Intel Sandy Bridge 4C 32nm 4 995M 216mm2
Intel Lynnfield 4C 45nm 4 774M 296mm2
Intel Clarkdale 2C 32nm 2 384M 81mm2
Intel Sandy Bridge 2C (GT1) 32nm 2 504M 131mm2
Intel Sandy Bridge 2C (GT2) 32nm 2 624M 149mm2

Despite the downward revision in Bulldozer's transistor count by 800M, AMD's first high-end 32nm processor still  boasts a higher transistor density than any of its 45nm predecessors (as you'd expect):

Transistor Density Comparison

Transistor density depends on more than just process technology. The design of the chip itself including details like the balance between logic, cache and IO transistors can have a major impact on how compact the die ends up being. Higher transistor densities are generally more desirable to a manufacturer (fewer defects per die, more die per wafer, lower costs), but from the end user's perspective the overall price/performance (and power?) ratio is what ultimately matters.

Log in

Don't have an account? Sign up now